震撼人心:科學(xué)家利用 AI 改進(jìn)地下碳封存技術(shù)

來源:投影時代 更新日期:2022-04-27 作者:佚名

    新型神經(jīng)算子加速碳捕獲和儲存模擬,為緩解氣候變化鋪平了道路。

 

    一支科學(xué)家團(tuán)隊創(chuàng)造出全新的 AI 工具,可以更快、更精準(zhǔn)地在多孔巖層中封存二氧化碳等溫室氣體。

    碳捕獲技術(shù)也被稱為碳封存,它能夠?qū)l(fā)電廠排放的二氧化碳重新導(dǎo)向地下,進(jìn)而減緩氣候變化。同時,科學(xué)家還必須避免因?qū)⒍趸甲⑷霂r石而造成的過度壓力積聚,否則可能會使地質(zhì)構(gòu)造斷裂,讓碳泄漏到含水層,甚至大氣中。

    名為 U-FNO 的新型神經(jīng)算子架構(gòu)能夠在毫秒間模擬碳儲存過程中的壓力水平,同時將一些任務(wù)的精確度提高一倍,幫助科學(xué)家找到最佳注入率和地點。發(fā)表在《水資源進(jìn)展》上的研究揭開了該算子的神秘面紗,這篇文章的共同作者來自斯坦福大學(xué)、加州理工學(xué)院、普渡大學(xué)和 NVIDIA。

    碳捕獲與封存是煉油、水泥和鋼鐵等行業(yè)用于脫碳和實現(xiàn)減排目標(biāo)為數(shù)不多的方法之一。全世界目前有一百多個碳捕獲與封存設(shè)施正在建設(shè)中。

    U-FNO 將被用于加速埃克森美孚的碳儲存預(yù)測,該公司資助了揭秘算子的研究。

    ?松梨诘叵绿純Υ娼(jīng)理 James V. White 表示:油藏模擬器是密集型計算機(jī)模型,計算工程師和科學(xué)家可以用它來研究地球地下地質(zhì)的多相流和其它復(fù)雜的物理現(xiàn)象。這項工作中所使用的機(jī)器學(xué)習(xí)技術(shù)能夠有效量化碳捕獲和封存等大規(guī)模地下流動模型中的不確定因素,并最終促成更好的決策。”

    碳儲存科學(xué)家如何使用機(jī)器學(xué)習(xí)

    科學(xué)家根據(jù)碳儲存模擬選擇正確的注入地點和速度、控制壓力的積聚、最大限度地提高儲存效率并確保注入活動不會使巖層斷裂。了解二氧化碳羽流(二氧化碳在地下的擴(kuò)散)對于封存項目的成功也十分重要。

    傳統(tǒng)的碳封存模擬器不僅費時費力,而且計算成本高。機(jī)器學(xué)習(xí)模型具有類似的精確度,但能夠顯著減少所需的時間和成本。

    基于 U-Net 神經(jīng)網(wǎng)絡(luò)和傅里葉神經(jīng)算子(FNO),U-FNO 能夠?qū)怏w飽和度和壓力積聚進(jìn)行更精準(zhǔn)的預(yù)測。與最先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)相比,U-FNO 的精確度增加了一倍,但只需三分之一的訓(xùn)練數(shù)據(jù)。

    NVIDIA 機(jī)器學(xué)習(xí)研究總監(jiān)、加州理工學(xué)院計算與數(shù)學(xué)科學(xué)系的布倫教授 Anima Anandkumar 表示:“用于科學(xué)建模的機(jī)器學(xué)習(xí)方法與標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)截然不同:在標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)中,一般使用固定分辨率的圖像;而在科學(xué)建模中,會根據(jù)采樣方式和地點使用不同分辨率的圖像。模型可以在不同分辨率之下完成歸納,而且不需要重新訓(xùn)練,因此大幅提升了速度。”

    完成訓(xùn)練的 U-FNO 模型可通過網(wǎng)絡(luò)應(yīng)用提供,為碳儲存項目提供實時預(yù)測。

    微軟行業(yè)研究執(zhí)行董事、挪威全面碳捕集與封存項目“北極光”計劃的合作者 Ranveer Chandra 表示:“ FNO 技術(shù)等最新 AI 創(chuàng)新可以將計算速度提高好幾個數(shù)量級,在幫助擴(kuò)大碳捕獲與封存技術(shù)方面也邁出了重要的一步。同時,模型并行 FNO 可以利用多個 NVIDIA Tensor Core GPU 的分布式內(nèi)存擴(kuò)展到實際 3D 問題規(guī)模!

    新型神經(jīng)算子加速二氧化碳儲存預(yù)測

    U-FNO 使科學(xué)家能夠模擬 30 年注入過程中的壓力積聚和二氧化碳的擴(kuò)散位置。通過 U-FNO 所提供的 GPU 加速,科學(xué)家只需要使用 NVIDIA A100 Tensor Core GPU 就能在一瞬間進(jìn)行 30 年的模擬,而使用傳統(tǒng)方法則需要 10 分鐘。

    研究者現(xiàn)在還可以使用 GPU 加速機(jī)器學(xué)習(xí),快速模擬多個注入地點。如果沒有這個工具,那么只能憑運氣選擇地點了。

    U-FNO 模型側(cè)重于模擬注入過程(此時超額注入二氧化碳的風(fēng)險最大)中的二氧化碳羽流遷移和壓力。該模型由斯坦福大學(xué) Sherlock 計算集群中的 NVIDIA A100 GPU 開發(fā)而成。

    U-FNO 的合作者、NVIDIA Earth-2 氣候變化減緩項目技術(shù)負(fù)責(zé)人 Farah Hariri 表示:“為了實現(xiàn)凈零排放,需要使用低排放能源以及負(fù)排放技術(shù),比如碳捕獲和儲存。該項目將是全球第一臺 AI 數(shù)字孿生超級計算機(jī)。我們通過將傅里葉神經(jīng)算子應(yīng)用于碳儲存,展示了 AI 如何幫助加速緩解氣候變化。Earth-2 將充分利用這些技術(shù)。”

   

 標(biāo)簽:人工智能 技術(shù)介紹
廣告聯(lián)系:010-82755684 | 010-82755685 手機(jī)版:m.pjtime.com官方微博:weibo.com/pjtime官方微信:pjtime
Copyright (C) 2007 by PjTime.com,投影時代網(wǎng) 版權(quán)所有 關(guān)于投影時代 | 聯(lián)系我們 | 歡迎來稿 | 網(wǎng)站地圖
返回首頁 網(wǎng)友評論 返回頂部 建議反饋
快速評論
驗證碼: 看不清?點一下
發(fā)表評論